Indian Statistical Institute, Bangalore

B. Math.

First Year, Second Semester
Linear Algebra-II
Back paper Examination Maximum marks: 100

Date : 7 June 2023
Time: 10.00AM-1.00PM
Instructor: B V Rajarama Bhat
Note: Consider standard inner product on \mathbb{R}^{n} and \mathbb{C}^{n} unless some other inner product has been specified. Further, $M_{n}(\mathbb{C})$ denotes the vector space of $n \times n$ complex matrices.
(1) Let n be a natural number. Let $a, b \in \mathbb{C}$ be complex numbers. Define a matrix $A=\left[a_{i j}\right]_{1 \leq i, j \leq n}$ by

$$
a_{i j}= \begin{cases}a & \text { if } i=1 \\ b & \text { if } i=j>1 \\ 0 & \text { otherwise }\end{cases}
$$

(i) Compute the characteristic polynomial of A. (ii) Compute the minimal polynomial of A. (iii) When is A invertible? (You should be careful and precise in your answers.)
(2) Let $\mathcal{P}=\left\{A \in M_{2}(\mathbb{C}): \operatorname{trace}(A)=0\right\}$. For $A, B \in \mathcal{P}$ define

$$
\langle A, B\rangle=\operatorname{trace}\left(A^{*} B\right)
$$

(i) Show that $\langle\cdot, \cdot\rangle$ defines an inner product on \mathcal{P}. (ii) Obtain an ortho normal basis for \mathcal{P}.
(3) Let \mathcal{V}, \mathcal{W} be finite dimensional inner product spaces and let $T: \mathcal{V} \rightarrow \mathcal{W}$ be a linear map. Show that there exists a unique linear map $T^{*}: \mathcal{W} \rightarrow \mathcal{V}$ such that

$$
\begin{equation*}
\left\langle T^{*} x, y\right\rangle=\langle x, T y\rangle, \forall x \in \mathcal{W}, y \in \mathcal{V}, \tag{15}
\end{equation*}
$$

where the inner products are taken in appropriate spaces.
(4) Let \mathcal{S} be the range of the matrix:

$$
B=\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 0 & 0 \\
2 & 0 & 7
\end{array}\right]
$$

Write down the projections onto \mathcal{S} and \mathcal{S}^{\perp} in the standard basis. Justify your answer.
(5) Show that a matrix $A \in M_{n}(\mathbb{C})$ commutes with every matrix $B \in M_{n}(\mathbb{C})$ if and only if there exists $a \in \mathbb{C}$ such that $A=a I$.
(6) State and prove singular value decomposition (SVD) theorem for square matrices. (You may use polar decomposition theorem.)
(7) Obtain the Jordan decomposition for the following matrix (You should also write down a non-singular matrix which yields the decomposition):

$$
C=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 7
\end{array}\right]
$$

